Analyzing forced unfolding of protein tandems by ordered variates, 1: Independent unfolding times.
نویسندگان
چکیده
Most of the mechanically active proteins are organized into tandems of identical repeats, (D)N, or heterogeneous tandems, D1-D2-...-DN. In current atomic force microscopy experiments, conformational transitions of protein tandems can be accessed by employing constant stretching force f (force-clamp) and by analyzing the recorded unfolding times of individual domains. Analysis of unfolding data for homogeneous tandems relies on the assumption that unfolding times are independent and identically distributed, and involves inference of the (parent) probability density of unfolding times from the histogram of the combined unfolding times. This procedure cannot be used to describe tandems characterized by interdomain interactions, or heteregoneous tandems. In this article, we introduce an alternative approach that is based on recognizing that the observed data are ordered, i.e., first, second, third, etc., unfolding times. The approach is exemplified through the analysis of unfolding times for a computer model of the homogeneous and heterogeneous tandems, subjected to constant force. We show that, in the experimentally accessible range of stretching forces, the independent and identically distributed assumption may not hold. Specifically, the uncorrelated unfolding transitions of individual domains at lower force may become correlated (dependent) at elevated force levels. The proposed formalism can be used in atomic force microscopy experiments to infer the unfolding time distributions of individual domains from experimental histograms of ordered unfolding times, and it can be extended to analyzing protein tandems that exhibit interdomain interactions.
منابع مشابه
Analyzing forced unfolding of protein tandems by ordered variates, 2: dependent unfolding times.
Statistical analyses of forced unfolding data for protein tandems, i.e., unfolding forces (force-ramp) and unfolding times (force-clamp), used in single-molecule dynamic force spectroscopy rely on the assumption that the unfolding transitions of individual protein domains are independent (uncorrelated) and characterized, respectively, by identically distributed unfolding forces and unfolding ti...
متن کاملOrder statistics theory of unfolding of multimeric proteins.
Dynamic force spectroscopy has become indispensable for the exploration of the mechanical properties of proteins. In force-ramp experiments, performed by utilizing a time-dependent pulling force, the peak forces for unfolding transitions in a multimeric protein (D)(N) are used to map the free energy landscape for unfolding for a protein domain D. We show that theoretical modeling of unfolding t...
متن کاملNonparametric density estimation and optimal bandwidth selection for protein unfolding and unbinding data.
Dynamic force spectroscopy and steered molecular simulations have become powerful tools for analyzing the mechanical properties of proteins, and the strength of protein-protein complexes and aggregates. Probability density functions of the unfolding forces and unfolding times for proteins, and rupture forces and bond lifetimes for protein-protein complexes allow quantification of the forced unf...
متن کاملDwell-time distribution analysis of polyprotein unfolding using force-clamp spectroscopy.
Using the recently developed single molecule force-clamp technique we quantitatively measure the kinetics of conformational changes of polyprotein molecules at a constant force. In response to an applied force of 110 pN, we measure the dwell times of 1647 unfolding events of individual ubiquitin modules within each protein chain. We then establish a rigorous method for analyzing force-clamp dat...
متن کاملUnfolding X-ray spectrum in the diagnostic range using the Monte Carlo Code MCNP5
Introduction: Unfolding X-ray spectrum is a powerful tool for quality control of X-ray tubes. Generally, the acquisition of the X-ray spectrum in diagnostic radiology departments is complicated and difficult due to high photon flux. Measurement of x ray spectra using radiation detectors could not be performed accurately, because of the pulse pile up. Therefore, indirect methods...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 93 4 شماره
صفحات -
تاریخ انتشار 2007